

Glass Fragment Analysis

Trace evidence recovery guidelines of "SWGMAT"

(Scientific Working Group of Material Analysis)

Physical examination

Physical appearance observation

Physical property identification

- Color

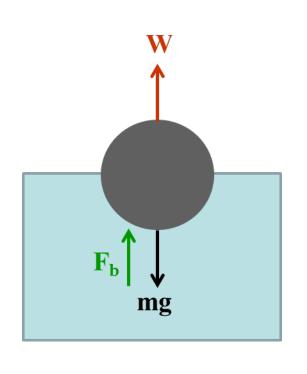
- Thickness
- Surface features
- Fluorescence

- Flatness

- Density
- Refractive Index

Overview of the density determination of glass fragment

Techniques	Buoyancy	Density	Sink-float method	
Parameters	Method (ASTM C693-93)	gradient column		
Size/weight of glass fragment	≥ 20 g	2-3mm in 	2-3mm in ⊕ (≥ 5mg)	
Solution	DI water	Miscible liquids	Bromoform and Bromobenzene	
Cost consuming	High	Medium	Low	
Time consuming	High	High	Low	



Designation: C 693 - 93 (Reapproved 2003)

Standard Test Method for Density of Glass by Buoyancy¹

ASTM International: American Standard Test Method International

ASTM Standard Test Method: Buoyancy method

Archimedes' principle

g/cm³: mass/volume

Volume of the immerged part =

Volume of the water replaced

Equation of the density determination

$$\rho_S = \frac{W_A}{W_A - W_W} \times (\rho_W - \rho_A) + \rho_A$$

 ρ_S = Density of glass specimen

 ρ_W = Density of water

 ρ_A = Density of air

 W_W = Weight of specimen in water

 W_A = Weight of specimen in air

Parameters

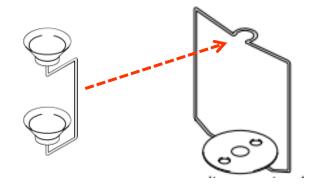
Parameter	Use to		
 Temperature and Pressure of air (T_A in °C and P_A in hPa) 	Find the density of air ($ ho_A$)		
2. Temperature of <i>water</i> (T _w in °C)	Find the density of water ($ ho_W$)		

Density of air

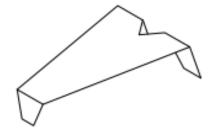
$$\rho_A = \frac{0.0012932}{1 + (0.0036728) \times T_A} \times \frac{P_A}{1013.25}$$

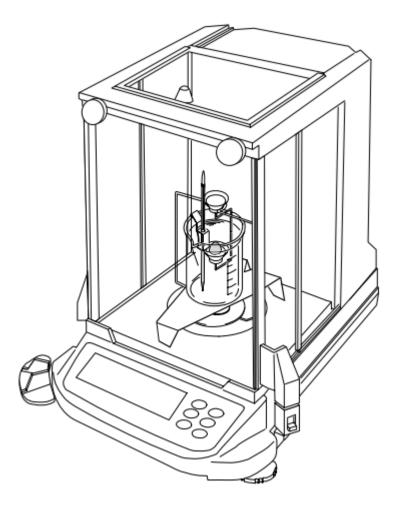
$$P_A = \text{Pressure of air}$$

$$T_A = \text{Temperature of air}$$

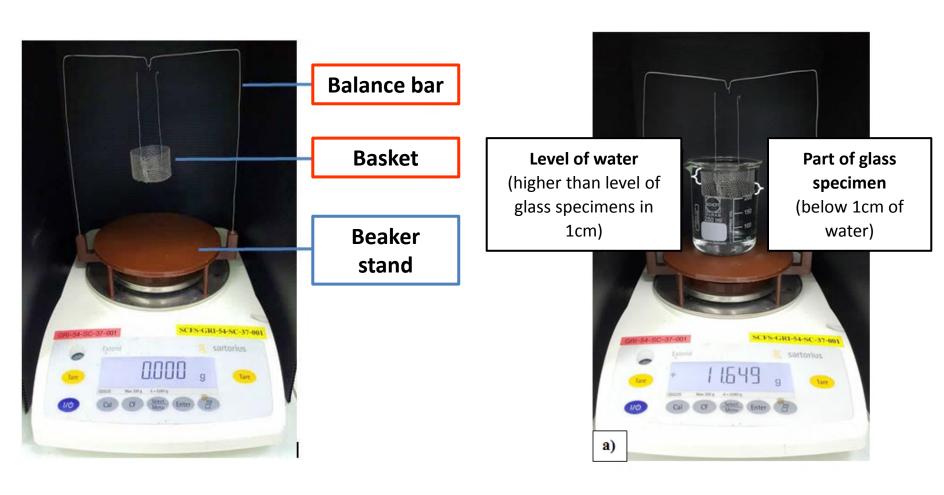

Density of water

From the Table of Air density (g/cm³) of ASTM C693-93 (2003)

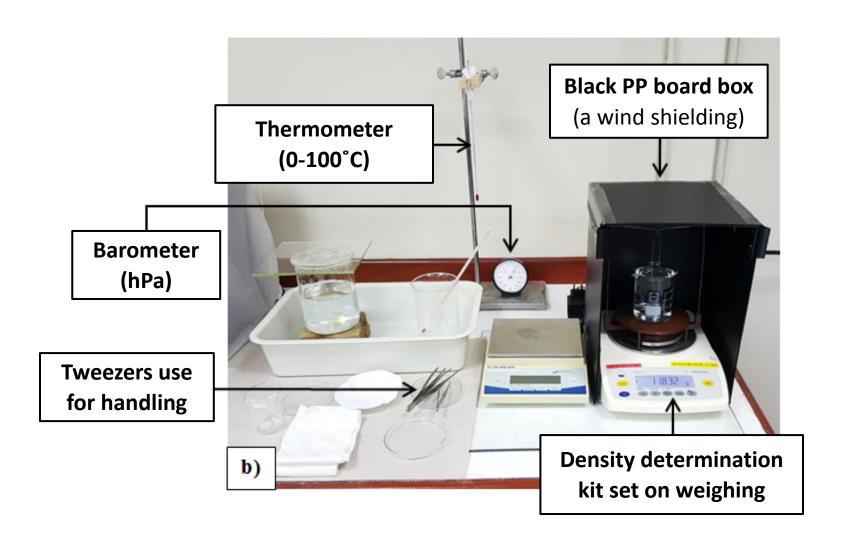

Commercial density determination kit


Two main parts of the kit

Balance bar


Beaker stand

(Source: A&D Company)


Experimental Instruments: Density determination kit

Two main parts of the kit

The kit set on weighing

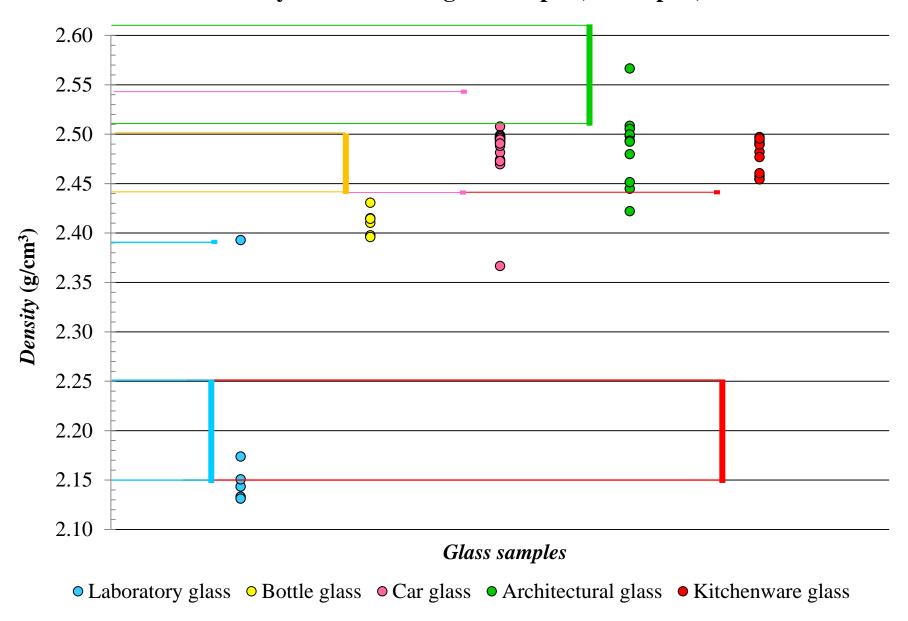
Experimental Setup

> Activity

Sample	Temp of air (T _A , °C)	Pressure of air (P _A)	Weight in air (W _A , g)	Temp of water (T _w , °C)	Weight in water (W _W , g)	ρ _Α	$ ho_{\scriptscriptstyle W}$	ρ _S

Density of glass specimen

$$\rho_S = \frac{W_A}{W_A - W_W} \times (\rho_W - \rho_A) + \rho_A$$


Density of air

$$\rho_A = \frac{0.0012932}{1 + (0.0036728 \times T_A)} \times \frac{P_A}{1013.25}$$

> Answers

Group	Glass sample	Density (g/cm ³)		
4	LAB3	2.133 ± 0.032		
1	CAR2	2.497 ± 0.002		
2	LAB4	2.151 ± 0.029		
	CAR7	2.494 ± 0.003		
3	BOT2	2.398 ± 0.016		
	BOT5	2.396 ± 0.013		
4	CAR8	2.508 ± 0.003		
	ARC3	2.509 ± 0.017		
5	CAR9	2.499 ± 0.001		
	ARC5	2.567 ± 0.009		

Density values of each glass sample (60 samples)

